Calor Y Temperatura

Calor Y Temperatura

Calor

(Redirigido desde «Calor y temperatura»)

Calor

Se denomina calor a la energía en tránsito que se reconoce solo cuando se cruza la frontera de un sistema termodinámico. Una vez dentro del sistema, o en los alrededores, si la transferencia es de dentro hacia afuera, el calor transferido se vuelve parte de la energía interna del sistema o de los alrededores, según su caso. El término calor, por tanto, se debe de entender como transferencia de calor y solo ocurre cuando hay diferencia de temperatura y en dirección de mayor a menor. De ello se deduce que no hay transferencia de calor entre dos sistemas que se encuentran a la misma temperatura (están en equilibrio térmico)

Naturaleza del calor

A menudo en el habla coloquial se usan expresiones como: Cantidad de calor de un cuerpo o ganancia de calor y se hace porque no producen ningún malentendido y quizás porque no hay ninguna alternativa técnica que sea tan intuitiva, pero en un sentido técnico son incorrectas. El calor, visto desde la física, no se tiene, el calor es una transferencia.1​ Lo que tiene un cuerpo, es energía térmica, mejor aún, si se considera el cuerpo como un sistema termodinámico, la energía total del sistema tiene dos formas: macroscópica y microscópica. La energía macroscópica es la que tiene el sistema con referencia a un origen exterior, como la energía cinética y la potencial. La microscópica es su grado de actividad molecular, que es independiente del sistema de referencia externo y es lo que se conoce como Energía interna del sistema y se representa por U {\displaystyle U} U.

Las moléculas de un sistema se agitan con cierta velocidad, además giran y vibran de manera irregular y todo este movimiento les confiere una energía cinética que es la parte de la energía interna que es energía sensible, porque la velocidad promedio de las moléculas es proporcional a la temperatura, que es lo que podemos percibir. Pero también las moléculas están unidas por fuerzas de atracción que son más fuertes en los sólidos, disminuyen en los líquidos y aún más en los gases, de forma que un sistema en estado gaseoso implica una energía que ha sido necesaria para vencer las fuerzas intermoleculares. Esta energía que tiene que ver con la fase en que está el sistema, se llama energía latente. Los átomos están unidos por enlaces que se forman y se destruyen en las reacciones químicas. La energía interna asociada con los enlaces atómicos, es la energía química. Y por fin, las fuerzas de atracción en el núcleo de los átomos constituye la energía nuclear, que se libera en las reacciones nucleares. Todas estas formas de energía, se almacenan en el interior del sistema y conforman su energía interna.

Pero hay formas de energía que no se pueden almacenar, que solo aparecen cuando hay interacción y constituyen lo que llamamos la energía ganada o perdida por el sistema. Estas formas de energía, son la Transferencia de calor y el Trabajo. Cuando el origen o la fuerza motriz de la interacción es una diferencia de temperatura, decimos que es calor, en caso contrario es trabajo.

Resumiendo, es muy común referirse a la energía sensible y latente como calor y está bien coloquialmente, pero en realidad es energía térmica, que es muy distinta de la transferencia de calor.

Calor específico

El calor específico es un parámetro que depende del material y relaciona el calor que se proporciona a una masa determinada de una sustancia con el incremento de temperatura:

Calor específico molar

Con frecuencia es muy útil hablar de calor específico molar denotado por cmol, y definido como la cantidad de energía necesaria para elevar la temperatura de un mol de una sustancia en 1 grado

Capacidad calorífica

La capacidad calorífica de una sustancia es una magnitud que indica la mayor o menor dificultad que presenta dicha sustancia para experimentar cambios de temperatura bajo el suministro de calor.

Cambios de fase

En la naturaleza existen tres estados usuales de la materia: sólido, líquido y gaseoso. Al aplicarle calor a una sustancia, ésta puede cambiar de un estado a otro. A estos procesos se les conoce como cambios de fase. Los posibles cambios de fase son:

de estado sólido a líquido, llamado fusión,

de estado líquido a sólido, llamado solidificación,

de estado líquido a gaseoso, llamado evaporación o vaporización,

de estado gaseoso a líquido, llamado condensación,

de estado sólido a gaseoso, llamado sublimación progresiva,

de estado gaseoso a sólido, llamado sublimación regresiva o deposición,

de estado gaseoso a plasma, llamado ionización.

de estado plasma a gaseoso, llamado Desionización

Calor latente

Que un cuerpo sólido puede estar en equilibrio térmico con un líquido o un gas, o que un líquido y un gas pueden estar en equilibrio térmico entre sí, en una amplia gama de temperaturas, es algo normal y frecuente. Pero lo que no es tan normal es que dos fases o estados de agregación distintos de una misma sustancia, puedan estar en equilibrio térmico entre sí, naturalmente en circunstancias apropiadas.

Un sistema que consiste en formas sólida y líquida de determinada sustancia, a una presión constante dada, puede estar en equilibrio térmico, pero únicamente a una temperatura llamada punto de fusión simbolizado a veces como t f . A esta temperatura, todo el calor agregado se invierte en fundir el material mientras quede una partícula sólida, sin que haya un cambio significativo de su temperatura. La cantidad de energía agregada, se llama calor de fusión, calor latente de fusión o entalpía de fusión, y es diferente para cada sustancia. Se denota por L f .

Para pasar de líquido a sólido se necesita la misma cantidad de energía, por ello el calor de fusión representa la energía necesaria para cambiar del estado sólido al líquido, y viceversa.

De manera similar, un líquido y un vapor de una misma sustancia pueden estar en equilibrio térmico a una temperatura llamada punto de ebullición simbolizado por t e . El calor necesario para evaporar una sustancia en estado líquido ( o condensar una sustancia en estado de vapor ) se llama calor de ebullición o calor latente de ebullición o entalpía de ebullición, y se mide en las mismas unidades que el calor latente de fusión. Se denota por L e .

En la siguiente tabla6​ se muestran algunos valores de los puntos de fusión y ebullición, y los calores latentes de fusión y evaporación de algunas sustancias:

sustancias t f [°C] L f

[kJ/kg] t e [°C] L e

Agua - Hielo 0, 00 334 100, 00 2260

Alcohol etílico −114, 00 105 78, 3 846

Acetona −94, 3 96 56, 2 524

Benceno 5, 5 127 80, 2 396

Aluminio 658, 7 322–394 2300 9220

Estaño 231, 9 59 2270 3020

Hierro 1530 293 3050 6300

Cobre 1083 214 2360 5410

Mercurio −38, 9 11, 73 356, 7 285

Plomo 327, 3 22, 5 1750 880

Potasio 64 60, 8 760 2080

Sodio 98 113 883 4220

Transmisión de calor

En general, se admiten tres formas distintas de transmitir el calor: por conducción, por convección y por radiación. En rigor, solo la conducción y la radiación son formas de transmisión del calor, que para producirse dependen exclusivamente de la existencia de un desequilibrio térmico. El caso de la convección depende además del transporte mecánico de masa, sin embargo como sigue habiendo una transferencia de calor desde una zona de mayor temperatura a otra de temperatura inferior, se adopta la expresión transmisión de calor por convección.

Medida del calor

Si se tiene un cuerpo en equilibrio termodinámico y se le deje en un medio que tiene una temperatura diferente, se produce una transferencia de energía entre el cuerpo y los alrededores hasta que se alcanza el equilibrio térmico, es decir, hasta que ambos están a la misma temperatura, en cuyo momento cesa la transferencia. Se dice que la energía se ha transferido en forma de calor.

La termodinámica estudia los estados de equilibrio y nos permite por la primera ley, determinar la diferencia de calor entre el estado 1 y el estado 2, tanto del cuerpo, como del medio en que se le sumergió. Si se admite que no ha habido más interacción que la debida a la diferencia de temperatura, la variación de energía interna del cuerpo y del medio son iguales y tanto una como la otra, informan sobre la cantidad de calor necesaria para pasar del estado 1 al 2, pero no nos dicen nada de cómo ha sido el flujo de calor entre ambos estados, ni cuál ha sido el tiempo necesario para la transferencia.

d Q = d U = U 2 − U 1

Como forma de energía, el calor tiene unidades deenergía, por lo que si nos atenemos al Sistema Internacional de Unidades, se medirá en Julios J Teniendo en cuenta que esta unidad es muy pequeña y que la unidad de masa es el kg, se toma normalmente el kilojulio k J , que definido como calor sería:

Un kiloJulio es el calor que hay que transferir a 1 kg de agua para aumentar su temperatura 0,24 K aproximadamente.8​

Cuando es necesario conocer el flujo de calor o cantidad de calor transferido por unidad de tiempo, lo que se busca es d Q / d t y se medirá en k J / s , es decir, en k W . El cálculo del flujo de calor y de sus modos de transmisión no corresponden a la termodinámica, sino a otra parte de la física que es la Transferencia de calor.

El calor es una magnitud con dirección, por tanto es necesario darle un signo para completar la información. No hay un acuerdo total sobre el signo convencional, pero el más aceptado es:

La transferencia de calor hacia un sistema es positiva y la transferencia de calor desde el sistema es negativa.9​

Calorimetría

Para determinar de manera directa el calor que se pone de manifiesto en un proceso de laboratorio, se suele emplear un calorímetro. En esencia se trata de un recipiente que contendrá el líquido en el que se va a estudiar la variación de energía por transferencia de calor, cuya envolvente debe estar perfectamente aislada para garantizar que el proceso se acerque lo más posible al adiabático. Termodinámica y transferencia de calor

La termodinámica informa de transferencia de calor de un proceso, sin considerar el mecanismo de flujo de calor ni el tiempo necesario para efectuar la transferencia. Un estudio termodinámico determina cuánto calor debe transferirse para que se realice el paso de un estado a otro, apoyándose en el Primer principio o principio de conservación de la energía. Desde un punto de vista de la ingeniería, el problema clave es calcular la velocidad de transferencia de calor para una diferencia de temperatura determinada.

La Termodinámica trata de los estados de equilibrio y de los cambios que ocurren entre un estado de equilibrio y otro. La Transferencia de calor sin embargo se ocupa de los fenómenos que se producen a partir de que existe un desequilibrio térmico y por tanto, exige una condición de no equilibrio. En consecuencia, el estudio de la transferencia de calor no puede basarse sólo en los principios de la termodinámica, sin embargo estos y cualquier ley física que tenga que ser satisfecha por un proceso, proporcionan ecuaciones que pueden utilizarse en el análisis.

La forma de aplicar la primera ley de la termodinámica es establecer un volumen de control que es una región fija del espacio limitada por una superficie de control y a través de la cual puede pasar calor, trabajo y masa. A partir de ahí se puede realizar un balance de energía:

Sensación de calor en el ser humano

Intentar cuantificar calor en el sentido en que lo usamos coloquial y cotidianamente, es más complicado de lo que parece, ya que ello depende de muchas más variables y sobre todo más impredecibles de las que se han apuntado hasta ahora. Empezando por el país, zona, clima, pasando por la luminosidad o el color predominante y hasta el sexo y la situación anímica del individuo pueden influir en la sensación térmica.

Generalmente en la mayoría de los países, se habla ya de calor cuando la temperatura supera los 26 °C en cualquier hora del día, aunque varía mucho según la estación del año. Por ejemplo, 20 °C en verano es considerado una temperatura fresca, mientras que en invierno, esta temperatura es considerada templada o cálida.

El fenómeno “ola de calor” se anuncia cuando las temperaturas diurnas superan los 32 °C y las nocturnas (o al amanecer) no bajan de los 23 °C durante tres días. Es común en casi todo tipo de climas en época veraniega, a excepción de los países cerca de los polos, donde es muy infrecuente o casi nulo, y se hace más frecuente a medida que los países están más cerca de los trópicos. Esta denominación de ola de calor, no quiere decir necesariamente calor excesivo ni temperaturas inusuales para la estación, sino que pretende alertar sobre consecuencias perjudiciales en personas o colectivos vulnerables.

Se tiene una sensación de más calor cuando hay más humedad en el ambiente. Por ejemplo, una temperatura de 30 °C, con humedad ambiental del 10 %, se sentirá como si el ambiente fuese de solo 28 °C. Pero con humedad ambiental del 90 %, se sentirá como si el ambiente fuese de 40 °C.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Calor&oldid=100595644»


Mis sitios nuevos:
Emprendedores
Politica de Privacidad