Efecto Doppler

Efecto Doppler

Efecto Doppler

El efecto Doppler, llamado así por el físico austriaco Christian Andreas Doppler, es el cambio de frecuencia aparente de una onda producida por el movimiento relativo de la fuente respecto a su observador.1​

Hay ejemplos cotidianos del efecto Doppler en los que la velocidad a la que se mueve el objeto que emite las ondas es comparable a la velocidad de propagación de esas ondas. La velocidad de una ambulancia (50 km/h) puede parecer insignificante respecto a la velocidad del sonido al nivel del mar (unos 1235 km/h), sin embargo, se trata de aproximadamente un 4 % de la velocidad del sonido, fracción suficientemente grande como para provocar que se aprecie claramente el cambio del sonido de la sirena desde un tono más agudo a uno más grave, justo en el momento en que el vehículo pasa al lado del observador.

En el caso del espectro visible de la radiación electromagnética, si el objeto se aleja, su luz se desplaza a longitudes de onda más largas, produciéndose un corrimiento hacia el rojo. Si el objeto se acerca, su luz presenta una longitud de onda más corta, desplazándose hacia el azul. Esta desviación hacia el rojo o el azul es muy leve incluso para velocidades elevadas, como las velocidades relativas entre estrellas o entre galaxias, y el ojo humano no puede captarlo, solamente medirlo indirectamente utilizando instrumentos de precisión como espectrómetros.

Si el objeto emisor se moviera a fracciones significativas de la velocidad de la luz, sí sería apreciable de forma directa la variación de longitud de onda.

Descubrimiento

Doppler propuso este efecto en 1842 en su tratado Über das farbige Licht der Doppelsterne und einige andere Gestirne des Himmels (Sobre el color de la luz en estrellas binarias y otros astros).2​ El científico neerlandés Christoph Hendrik Diederik Buys Ballot investigó esta hipótesis en 1845 para el caso de ondas sonoras y confirmó que el tono de un sonido emitido por una fuente que se aproxima al observador es más agudo que si la fuente se aleja.

Hippolyte Fizeau descubrió independientemente el mismo fenómeno en el caso de ondas electromagnéticas en 1848. En Francia este efecto se conoce como «efecto Doppler-Fizeau»4​ y en los Países Bajos como «efecto Doppler-Gestirne».

En Gran Bretaña, John Scott Russell hizo un estudio experimental del efecto Doppler (1848).

Generalidades

En física clásica, donde las velocidades del emisor (también denominado fuente) y del receptor (o también observador) con respecto al medio son inferiores a la velocidad de las ondas en el propio medio, la relación entre la frecuencia observada f y la frecuencia emitida f 0 viene dada por:

En la fórmula anterior se supone que la fuente está acercándose (o alejándose) “directamente” del observador. Si la fuente se acerca al observador con velocidad constante, pero en una trayectoria “no incidente” (como por ejemplo, un avión en vuelo respecto a un observador situado en tierra), entonces:

La frecuencia que el observador escucha primero es más alta que la frecuencia emitida desde el objeto.

A continuación se produce una disminución gradual de la frecuencia percibida a medida que la fuente se acerca al observador, coincidiendo la frecuencia percibida con la original cuando la onda llega desde una dirección perpendicular al movimiento relativo (es decir, cuando fue emitida desde el punto más cercano al observador, aunque cuando se reciba la onda, la fuente y el observador ya no estarán en su posición más próxima).

Finalmente, el observador percibirá una continua disminución de la frecuencia a medida que se aleja la fuente.

Cuando el observador se encuentra muy cerca de la trayectoria del objeto, la transición de alta a baja frecuencia es muy abrupta. En cambio, cuando el observador está lejos de la trayectoria del objeto, la transición de alta a baja frecuencia es gradual.

Si las velocidades v s y v r son pequeñas en comparación con la velocidad de la onda, la relación entre la frecuencia observada f y la frecuencia emitida f 0 es aproximadamente.

Análisis

Para entender lo que sucede, considérese la siguiente analogía. Alguien lanza una bola cada segundo a un hombre. Se asume que las bolas viajan con velocidad constante. Si el lanzador está parado, el hombre va a recibir una bola cada segundo. Sin embargo, si el lanzador se está moviendo hacia el hombre, este va a recibir las bolas con mayor frecuencia debido a que las bolas estarán menos espaciadas. El inverso es cierto si el lanzador se aleja del hombre. Por lo que en realidad es la longitud de onda la que es afectada; como consecuencia, la frecuencia recibida también se ve afectada. También puede afirmarse que la velocidad de la onda permanece constante, mientras que se producen cambios en la longitud de onda; y por lo tanto, la frecuencia cambia también.

Para un observador en reposo respecto al medio, si una fuente en movimiento está emitiendo ondas con una frecuencia real dada f 0 (en este caso, la longitud de onda cambia pero la velocidad de transmisión de la onda se mantiene constante, por lo que la velocidad de transmisión de la onda no depende de la velocidad de la fuente), entonces el observador detecta ondas con una frecuencia f dada por:

Aplicaciones

Astronomía

El efecto Doppler sobre las ondas electromagnéticas como la luz es de gran utilidad en astronomía, y se manifiesta en los denominados corrimiento al rojo o corrimiento al azul. Se ha utilizado para medir la velocidad a la que estrellas y galaxias están acercándose o alejándose de la Tierra; es decir, sus velocidades radiales. Este fenómeno físico se utiliza para detectar estrellas binarias, para medir la velocidad de giro de las estrellas y galaxias, o para detectar exoplanetas. (Debe tenerse en cuenta que el desplazamiento al rojo también se utiliza para medir la expansión del espacio, aunque en este caso no se trata realmente de un efecto Doppler).10​

El uso del efecto Doppler sobre la luz en astronomía depende del conocimiento que se tiene de que los espectros de las estrellas no son homogéneos. Exhiben líneas de absorción bien definidas de las frecuencias que están en correspondencia con las energías requeridas para excitar los electrones de varios elementos de un nivel a otro.

El efecto Doppler es reconocible en el hecho de que los patrones conocidos de las líneas de absorción no aparecen siempre coincidiendo con las frecuencias que se obtienen a partir del espectro de una fuente de luz estacionaria. Dado que la luz azul tiene una frecuencia más alta que la luz roja, las líneas espectrales de una fuente de luz astronómica que se acerca exhiben un corrimiento al azul, y las de uno que se aleja experimentan un corrimiento hacia el rojo.

Entre las estrellas más cercanas a la Tierra, las mayores velocidades radiales con respecto al Sol son +308 km/s (BD-15°4041, también conocida como LHS 52, situada a 81,7 años luz de distancia) y –260 km/s (Woolley 9722, también conocida como Wolf 1106 y LHS 64, situada a 78,2 años luz de distancia). Una velocidad radial positiva significa que la estrella se está alejando del Sol, negativa que se está acercando. Radar

El efecto Doppler se utiliza en algunos tipos de radar, para medir la velocidad de los objetos detectados. Un haz de radar se dispara a un blanco móvil (por ejemplo, un automóvil, como en el uso que hace la policía del radar para detectar la velocidad de los vehículos) a medida que se acerca o se aleja de la fuente de radar. Cada onda sucesiva de radar tiene que viajar más lejos para alcanzar el coche, antes de ser reflejada y detectada de nuevo cerca de la fuente. Como cada onda tiene que moverse más lejos, la distancia entre cada onda aumenta, produciendo un aumento de la longitud de onda. En algunas situaciones, el haz del radar se utiliza con el coche en movimiento, y si se acerca al vehículo observado, entonces cada onda sucesiva recorre una distancia menor, produciendo una disminución de la longitud de onda.

En cualquiera de estas situaciones, los cálculos del efecto Doppler permiten determinar con precisión la velocidad del vehículo observado por el radar. Por otra parte, la espoleta de proximidad, desarrollado durante la Segunda Guerra Mundial, se basa en el radar Doppler para detonar explosivos en el momento adecuado en función de su altura sobre el suelo, o su distancia al objetivo.11​

Debido a que el desplazamiento Doppler afecta a la onda incidente en el objetivo, así como a la onda reflejada de nuevo al radar, el cambio en la frecuencia observado por un radar en movimiento respecto a un objetivo también en movimiento es función de su velocidad relativa Δ v y es doble del que se registraría directamente entre el emisor y el receptor:

Efecto Doppler inverso

Desde 1968, científicos como Victor Veselago han especulado sobre la posibilidad de un efecto Doppler inverso. El experimento que afirmó haber detectado este efecto fue llevado a cabo por Nigel Seddon y Trevor Bearpark en Bristol, Reino Unido en 2003.16​

Los investigadores de muchas universidades como la Swinburne University of Technology y la University of Shanghai for Science and Technology mostraron que este efecto también se puede observar en frecuencias ópticas. Esto fue posible gracias a la generación de un cristal fotónico sobre el que proyectaron un rayo láser. Esto hizo que el cristal se comportase como un superprisma, pudiendo observarse el efecto Doppler inverso.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Efecto_Doppler&oldid=100489983»


Mis sitios nuevos:
Emprendedores
Politica de Privacidad