Gases Ideales

Gases Ideales

Ley de los gases ideales

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.

En 1648, el químico Jan Baptista van Helmont creó el vocablo gas, a partir del término griego kaos (desorden) para definir las génesis características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos y se utiliza para designar uno de los estados de la materia.

La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante. o en términos más sencillos:

A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce. Matemáticamente se puede expresar así:

P V = k

donde k es constante si la temperatura y la masa del gas permanecen constantes.

Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

P 1 V 1 = P 2 V 2

Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, aparentemente de manera independiente por August Krönig en 18561​ y Rudolf Clausius en 1857.2​ La constante universal de los gases se descubrió y se introdujo por primera vez en la ley de los gases ideales en lugar de un gran número de constantes de gases específicas descriptas por Dmitri Mendeleev en 1874.3​4​ 5​

En este siglo, los científicos empezaron a darse cuenta de que en las relaciones entre la presión, el volumen y la temperatura de una muestra de gas, en un sistema cerrado, se podría obtener una fórmula que sería válida para todos los gases. Estos se comportan de forma similar en una amplia variedad de condiciones debido a la buena aproximación que tienen las moléculas que se encuentran más separadas, y hoy en día la ecuación de estado para un gas ideal se deriva de la teoría cinética. Ahora las leyes anteriores de los gases se consideran como casos especiales de la ecuación del gas ideal, con una o más de las variables mantenidas constantes.

Empíricamente, se observan una serie de relaciones proporcionales entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834 como una combinación de la ley de Boyle y la ley de Charles.

La ecuación de estado

El estado de una cantidad de gas se determina por su presión, volumen y temperatura. La forma moderna de la ecuación relaciona estos simplemente en dos formas principales. La temperatura utilizada en la ecuación de estado es una temperatura absoluta: en el sistema SI de unidades, kelvin, en el sistema imperial, grados Rankine.7​ Forma común

La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

P ⋅ V = n ⋅ R ⋅ T

Donde:

P = Presión absoluta

V = Volumen

n = Moles de gas

R = Constante universal de los gases ideales

T = Temperatura absoluta

Teoría cinética molecular

Esta teoría fue desarrollada por Ludwig Boltzmann y Maxwell. Nos indica las propiedades de un gas ideal a nivel molecular.

Todo gas ideal está formado por N pequeñas partículas puntuales (átomos o moléculas).

Las moléculas gaseosas se mueven a altas velocidades, en forma recta y desordenada.

Un gas ideal ejerce una presión continua sobre las paredes del recipiente que lo contiene, debido a los choques de las partículas con las paredes de este.

Los choques moleculares son perfectamente elásticos. No hay pérdida de energía cinética.

No se tienen en cuenta las interacciones de atracción y repulsión molecular.

La energía cinética media de la translación de una molécula es directamente proporcional a la temperatura absoluta del gas.

En estas circunstancias, la ecuación de los gases se encuentra teóricamente:

P V = N κ B T

donde κ B es la constante de Boltzmann, donde N es el número de partículas.

Procesos gaseosos particulares

Procesos realizados manteniendo constante un par de sus cuatro variables (n, P , V, T), de forma que queden dos; una libre y otra dependiente. De este modo, la fórmula arriba expuesta para los estados 1 y 2, puede ser operada simplificando 2 o más parámetros constantes. Según cada caso, reciben los nombres.

Ley de Boyle-Mariotte

También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de gas constante, la presión de un gas es inversamente proporcional a su volumen.

Teóricas

La ley del gas ideal también se puede derivar de los primeros principios utilizando la teoría cinética de los gases, en el que se realizan varios supuestos simplificadores, entre los que las moléculas o átomos del gas son masas puntuales, poseen masa pero no volumen significativo, y se someten a colisiones elásticas sólo entre sí y con los lados del recipiente en el que se conserva tanto la cantidad de movimiento como la energía cinética.

Se puede hacer una derivación aún más simple prescindiendo de algunos de estos supuestos, como se discutió en la derivación de la ley del gas ideal. Sólo se necesita la definición de temperatura, que el número de partículas sea fijo, que el volumen de la dependencia de las energías de su interacción sea insignificante, y que el número de estados disponibles para cada partícula a una temperatura fija sea proporcional al volumen.) Como en todas las derivaciones termodinámicas, se asume la segunda ley (maximización de la entropía dentro de las limitaciones).

No hay hipótesis sobre las colisiones elásticas se requieren, lo cual es bueno ya que estos supuestos son irreales e irrelevantes para el estado de los gases ideales.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Ley_de_los_gases_ideales&oldid=100370773»


Mis sitios nuevos:
Emprendedores
Politica de Privacidad