Principios De Conservacion

Principios De Conservacion

Conservación de la energía

La ley de la conservación de la energía afirma que la cantidad total de energía en cualquier sistema físico aislado (sin interacción con ningún otro sistema) permanece invariable con el tiempo, aunque dicha energía puede transformarse en otra forma de energía. En resumen, la ley de la conservación de la energía afirma que la energía no puede crearse ni destruirse, solo puede cambiar de una forma a otra,1​ por ejemplo, cuando la energía eléctrica se transforma en energía calorífica en un calefactor.

En termodinámica, constituye el primer principio de la termodinámica (la primera ley de la termodinámica).

En mecánica analítica, puede demostrarse que el principio de conservación de la energía es una consecuencia de que la dinámica de evolución de los sistemas está regida por las mismas características en cada instante del tiempo. Eso conduce a que la “traslación” temporal sea una simetría que deja invariante las ecuaciones de evolución del sistema, por lo que el teorema de Noether lleva a que existe una magnitud conservada, la energía.

El principio en mecánica clásica

En mecánica lagrangiana la conservación de la energía es una consecuencia del teorema de Noether cuando el lagrangiano no depende explícitamente del tiempo. El teorema de Noether asegura que cuando se tiene un lagrangiano independiente del tiempo, y por tanto, existe un grupo uniparamétrico de traslaciones temporales o simetría, puede construirse una magnitud formada a partir del lagrangiano que permanece constante a lo largo de la evolución temporal del sistema, esa magnitud es conocida como hamiltoniano del sistema. Si además, la energía cinética es una función sólo del cuadrado de las velocidades generalizadas (o lo que es equivalente a que los vínculos en el sistema sean esclerónomos, o sea, independientes del tiempo), puede demostrarse que el hamiltoniano en ese caso coincide con la energía mecánica del sistema, que en tal caso se conserva.

En mecánica newtoniana el principio de conservación de la energía, no puede derivarse de un principio tan elegante como el teorema de Noether, pero puede comprobarse directamente para ciertos sistemas simples de partículas en el caso de que todas las fuerzas deriven de un potencial, el caso más simple es el de un sistema de partículas puntuales que interactúan a distancia de modo instantáneo.

Véase también: Teorema de la energía cinética

El principio en mecánica relativista

Una primera dificultad para generalizar la ley de conservación de la energía de la mecánica clásica a la teoría de la relatividad está en que en mecánica relativista no podemos distinguir adecuadamente entre masa y energía. Así de acuerdo con esta teoría, la sola presencia de una partícula material de masa m en reposo respecto de un observador implica que dicho observador medirá una cantidad de energía asociadada a ella dada por E = mc2. Otro hecho experimental contrastado es que en la teoría de la relatividad no es posible formular una ley de conservación de la masa análoga a la que existe en mecánica clásica, ya que esta no se conserva. Así aunque en mecánica relativista no existan leyes de conservación separadas para la energía no asociada a la masa y para la masa, sin embargo, sí es posible formular una ley de conservación “masa-energía” o energía total.

Dentro de la teoría de la relatividad especial, la materia puede representarse como un conjunto de campos materiales a partir de los cuales se forma el llamado tensor de energía-impulso total y la ley de conservación de la energía se expresa en relatividad especial, usando el convenio de sumación de Einstein.

El principio en mecánica cuántica

En mecánica cuántica aparecen algunas dificultades al considerar la cantidad de energía de un sistema a lo largo del tiempo. Así la energía total en ciertos sistemas aislados no está fijada para algunos estados cuánticos sino que puede fluctuar a lo largo del tiempo. Sólo los estados llamados estacionarios que son autovectores del operador hamiltoniano tienen una energía bien definida, cuando además el hamiltoniano no depende del tiempo.

Sin embargo, en sistemas aislados aún para estados no estacionarios, puede definirse una ley de conservación de la energía en términos de valores medios. De hecho para un sistema cuántico cualquiera el valor medio de la energía de un estado puro viene dado

Obtenido de «https://es.wikipedia.org/w/index.php?title=Conservación_de_la_energía&oldid=100758407»


Mis sitios nuevos:
Emprendedores
Politica de Privacidad